理研NMR施設利用報告書

(トライアルユース)

13-500-038

平成 26 年 8月18日

利用機関名		ソニー株式会社
実施部署名		先端マテリアル研究所材料解析センター
実施責任者管理職名・		統括課長 / 佐鳥浩太郎(担当:汲田英之)
氏名		
実施部署所在地		神奈川県厚木市旭町4-14-1厚木テック105G
利用課題名		リチウムイオン電池の性能向上に向けた材料開発
利用目的・内容		高容量、高信頼性を併せ持つリチウムイオン二次電池を実現する
		ための材料開発を行う。ここでは、正極、負極合材の固体NMRスペ
		クトルを測定することで、リチウムイオン二次電池の電極組成や充
		放電機構を明らかにし、高容量化や信頼性改善指針を得る。
利用実施時期及び期間		平成 25年 10月 15日~平成 26年 5月 7日
		当初計画どおり・ 当初計画変更 (変更理由)
利用施設	NMR	利用装置①
	装置	- ()600MHz, (O)700MHz, ()800MHz, ()900MHz
	(該当	利用期間 1:平成 25年 10月 15日 ~ 平成 25年 10月 17日
	部分に	利用期間 2: 平成 25年 11月 26日 ~ 平成 25年 12月 2日
	O)	利用期間 3: 平成 26年 2月 3日 ~ 平成 26年 2月 10日
		利用期間 4: 平成 26年 4月 23日 ~ 平成 26年 5月 7日
利用満足度		(〇)大いに満足、()ほぼ満足、()やや不満、
(複数選択不可)		()大いに不満

成果の概要

実施内容

今回のトライアル利用では、貴所にて共用開始予定であった超高速 MAS プローブを使用して、常磁性の遷移金属イオンを含む正極材料 の固体 7 Li NMR スペクトルを測定する計画であったが、プローブの 供用開始時期が4月以降にずれ込んだため、代替サンプルにて以下 の2つの課題に関する実験を行った。

① 体電解質の構造解析

イオン伝導率の高い固体電解質の開発に向けて、いくつかの組成比、合成条件の異なる固体電解質サンプルにおいて、「Li 核等の多核固体 NMR 測定を行い、構造評価を行った。

②次世代 Li イオン 2 次電池の正極合材の ⁷Li – NMR スペクトル測定 次世代 Li イオン 2 次電池の正極開発に向けて、正極活物質とそのカーボン複合体の ⁷Li – NMR スペクトルの測定を行い、担持体としてのカーボンの共存の影響を評価した。

本課題によれ、果標との出来である。

較

①⁷Li 核等の多核固体 NMR スペクトルから各原子における局所構造 や結晶性に関する情報が得られ、他の構造解析手段のデータや電気 化学的性質との関係性を考察した。その結果、微小な構造や結晶性 の変化が本材料の電気化学的性質と密接に関係しているとの結果 を得ることができた。

②活物質に含まれるLi イオンと帰属されるシグナルが確認でき、これは担持体カーボンの共存下においても、全くその化学シフト値に影響を受けないことが明らかになった。これは、今後の本電池の7Li-NMRによる評価において、ベースとなる重要な知見になる。

今後の展 開、課題

①本材料の構造と電気化学的性質の相関について、更なる一般性を 論じるため、より多くのサンプルの測定を行い、データを収集する。 ②ここで得られた知見を基に、充放電時の電極材料に関しても同様 に7Li-NMRによる評価を行い、本電池の充放電機構を明らかにして 行く。

両実験の結果から、今後の Li イオン2次電池の開発指針を明らかにし、高容量、高信頼性を併せ持つリチウムイオン二次電池を実現する。

社会・経済への波及効果の見通し	モバイル製品から EV まで、リチウムイオン二次電池はあらゆる用 途において、高出力化、低コスト化、安全性の向上、長寿命化が要
**************************************	求されるが、本実験はこれらの要求に答えるべく遂行されている。
成果公開延期の希望の	()あり : (O)なし
有無	「あり」の場合理由:
理研 NMR 施設利用にお	外部利用において、700 MHz の強磁場装置が1週間にわたり占有で
ける感想	きたことは、非常に貴重な機会であったと実感しています。今後も、
	高磁場の固体 NMR 装置の需要は高まっていくと思われますので、更
	なる装置の拡充を希望します。
利用周辺環境に関する	酸素や湿気と反応してしまう粉末サンプルの取り扱い(サンプルロ
希望	ーターへの充填等)のためのグローブボックス(Dry N2, Ar 雰囲気)
	の設置を希望します(リチウムイオン電池の電極サンプルのほとん
	どは酸素や湿気と反応します)。
今後の利用形態の予定	(〇)再度本事業への申請を考えている。
	()成果の非公開を前提とした「外部利用」(有料)を考えてい
	る。
	()その他理研との共同研究等を考えている。
	具体的に:
	()未定
今後期待するその他の	(〇) NMR 装置利用の教育 (これまで NMR を使用した経験の無い
サービス	方に対する教育も含む)
	()NMR 装置利用の技術的なサポート
	(〇) その他
	具体的に
	固体 NMR 装置の更なる拡充と固体 NMR の専門的な測定技術の指導を
	希望します。
文部科学省の共用ナビ	(http://kyoyonavi.mext.go.jp/)
(研究施設共用総合ナ	()見た : (○)見ていない
ビゲーションサイト)	感想等:
に対する感想・改善に	
ついて	

(上記の項目以外でご意見等お願いします。)
特になし。

本報告書については、印刷または必要な編集・加工を行った上で公開します。また、別 途開催予定の成果報告会・シンポジウムや委託事業報告書作成時において、本報告書の内 容についての資料作成または発表をお願いする場合があります。